Documentation & User Guide of SLANG Compiler

Documentation & User Guide of

SLANG Compiler

Submitted by: Bhushan Suryavanshi
Course: Compiler Design

Student Id: 5101204

Instructor: Prof. J. Opatrny

Date: 18-4-2004

Department of Computer Science

Table of Contents
31.
Introduction

32.
Description of SLANG

32.1.
Lexical Conventions

32.2.
Original Grammar of SLANG

42.3.
Modified Grammar of SLANG

52.4.
Semantics (informal) of SLANG

63.
Structure of the SLANG Compiler

63.1.
Design of Lexical Analyzer

93.2.
Design of Parser

133.3.
Design of Symbol Table

183.4.
Description of the Intermediate Code

273.5.
Description of Code Generation

333.6.
Run-Time Environment

333.7.
Description of Error Handling

343.6.1
Lexical Error

343.6.2
Syntactic Error

353.6.3
Semantic Error

373.8.
Host Language

374.
User Guide

374.1.
SLANG Fundamentals

374.1.1
Identifiers and Keywords

374.1.2
Data Types

384.1.3
Constants

384.1.4
Variables and Array

384.1.5
Declaration

394.1.6
Operators

394.1.7
Expressions

394.1.8
Statements

394.1.9
Comments

394.2.
Data Input and Output

404.3.
Conditional and Control Statements

424.4.
Modules

424.4.1
Defining a Module

434.4.2
Calling Module and Parameter Passing

444.4.3
Return value from Module

444.4.4
Recursion

464.5.
Compiling a SLANG program

465.
Efficiency

486.
Design Decisions

497.
Appendix A: Some Test Case Results

497.1.
Lexical Analysis

507.2.
Syntactic Analysis

537.3.
Semantic Analysis (Symbol Table)

547.4.
Intermediate Code Generation

587.5.
Code Generation

678.
References

1. Introduction
Compilers are computer programs that translate one language to another. A compiler takes as its input a program written in a source language and produces an equivalent program written in target language. Usually the source language is a high-level language and the target language is object code for the target machine, that is, code written in the machine instruction of the computer on which it is to be executed.
Statement of Problem:

To design and implement a compiler for programs written in the given source language. The source language is SLANG and the target language is assembly code of MOON processor.
2. Description of SLANG
2.1. Lexical Conventions
1) A white space is any blank or tab (\t).

2) A blank space can be placed between the program language constructs for enhancing the readability of the program. All blank spaces and newline characters will b removed by the compiler. Hence blank spaces and newline character just increase the readability.

 eg. abc = 3.55; //blank spaces allowed

 abc = 3. 55 //blank space after the decimal point not allowed

3) The compiler is not case sensitive. Hence “BEGIN” and “begin” have the same meaning. Internally all lexemes will be stored in lower case.

4) Comments are multi-line comments and they can be inserted any where in program listing. Comments start with /* and end with */

5) No restriction on the length of lexeme.

2.2. Original Grammar of SLANG
M -> program i; Dl B

Dl -> DvMl

Ml -> MlMo | e

Mo -> module i(Vl) Dv B

Dv -> variables Vl | e

Vl -> VlV | e

V -> Il : T;

T -> integer Ad| char Ad

Il -> i | Il,i

Ad -> e | array [n]

B -> begin Sl end;

Sl -> S | S Sl

S -> L := E; | if C then S else S | loop Sl end; | exit; | i(Lp);|B | read Ln ; | write Lo; |e;

Ln -> L{,L}

L -> iAr

Lo -> Lr{,Lr}

Lr -> iAr | n | c

Ar -> e | [E]

E -> F {Oa F}

Oa -> + | −

F -> R {Om R}

Om -> * | /

R -> L | n | (E) | c

C -> E Or E

Or -> = | < | > | <= | >=| !=

2.3. Modified Grammar of SLANG
M
(program i; DI B

DI
(DV ML

ML
(MO ML | e

MO
(module i (VL) DV B

DV
(variables VL | e

VL
(V VLMORE

VLMORE (VL| e

V
(IL : T;

T
(integer AD| char AD

IL
(i | i, IL
AD
(e | array [n]

B
(begin SL end;

SL
(S SLMORE

SLMORE(SL| e
S
(L SMORE | if C then S else S | loop SL end; | exit; | B | read LN ; | write Lo; |e;
SMORE(:=E; | (LN);
LN
(L LNMORE

LNMORE(, LN| e
L
(iAR
LO
(LR LOMORE

LOMORE(, LO| e
LR
(iAR | n | c

AR
(e | [E]

E
(F EMORE

EMORE(+ E| - E | e
F
(R FMORE

FMORE(* F| / F | e
R
(L | n | (E) | c

C
(E CMORE

CMORE (=E | <E | > E | <= E | >= E | !=E
2.4. Semantics (informal) of SLANG
1) Variable Definition:
· All Variables should be declared before use.
· Each variable declared in a module can be used only in that module.
· Global variables can be used throughout the program.
2) Module Definition:

· Modules should be defined before use.
· Each module can be declared only once.

· Module cannot have the same name as the program.

3) Parameter passing for Call of a Module:
· The strategy used for module calling is call by Value –Result
· Parameters passed from the caller should match in number, order and type with the parameters of the module which is called.
· The last (trailing) parameter of the function is always the return value and should be always present. Hence each module will have at-least one parameter defined which would be the return value parameter. If no value is required to be returned then pass a dummy variable.

· Parameters are always passed by value except array variable which are passed by reference.

· There is no limit on the number of parameters.

· Recursion is allowed i.e a module can give a call to itself.

4) Expressions:
· An expression cannot have mixture of types. Mixed type expressions are not allowed.

· Similarly a variable of one type cannot be assigned a value of another type.

5) Array Variable :
· Array variable subscript should be an integer variable or number.

· Name of the array indicates the address of the first element of the array.

· Array address cannot be explicitly changed

· All arrays begin with subscript 0.
· When arrays are passed to modules they are always passed by reference i.e. there address is passed to the module.
3. Structure of the SLANG Compiler
3.1. Design of Lexical Analyzer
List of Tokens:

Token
Description

Attribute

ID

identifier

pointer to symbol table entry of the lexeme
NUM

numerical constant
the numerical constant

CH

character constant
the character constant

OPB open bracket

-

CLB

close bracket

-

SEM

semi colon

-

PLUS

plus

-

MINUS
minus

-

MULT

multiply

-

DIV

divide

-
ASSN

assignment operator

-
LT

less than

-
GT

greater than

-
EQ

equal to

-
LE

less than equal to

-
GE

greater than equal to

-
NE

not equal to

-
OPBOX
open box bracket

-
CLBOX
close box bracket

-
COMMA
comma

-

COLON
colon

-

BEGIN
begin

-

END

end

-

PROG

program

-

VAR

variables

-

INT

integer

-

ARRAY
array

-

CHAR

char

-

MODULE
module

-

IF

if

-

THEN

then

-

ELSE

else

-

LOOP

loop

-

EXIT

exit

-

READ

read

-

WRITE
write

-

ER

error

-

EOFL

end of file

-

Description :
The Scanner consist of 3 functions. Each function is assigned certain responsibility for extracting the tokens from the source code. The functions can be explained as follows:

nextChar()

This function is used to extract the next character in the source program. It reads the next character in the stream.

skipBlankSpaces()
This function performs the task of skipping white spaces, tabs, and newline character. It also skips comments. The function also keeps track of the line number which is being compiled. Blank spaces are added to the program to increase the readability. Parser doesn’t recognize blank spaces and they have to be removed by the lexical analyzer. Comments are written for better understanding of the program which also are removed.

getToken()

This is the actual scanner function which when called by the parser will return the next token with the attribute of the token.

The getToken() function returns a token which is defined as follows:

union tokenAttr

{

symTabTypePtr ptSymTab;

int numVal; //value of the num literal

char chVal;

};

struct token //this is the actual token

{

int tokenVal;

union tokenAttr attr;

};
If token is ID its attribute is pointer to the symbol table entry of that ID, if that ID exist in the symbol table else NULL is the attribute.
If token is NUM its attribute is the value of numerical constant.

If token is CH its attribute is the value of character constant.

For all other tokens they have no attribute.

	Test Case No.
	Test Case Description / Purpose
	Test Procedure
	Expected Results

	TC_Scanner_001
	The lexeme is a keyword
	1. Call search_insert() with lexeme as keyword.
	The lexeme is a keyword hence not inserted in the symbol table

	TC_Scanner_002
	The lexeme is not a keyword
	1. Call search_insert() with lexeme as keyword.
	The lexeme is not found in the symbol table hence inserted in the symbol table. Pointer to the symbol table entry is returned

	TC_Scanner_003
	Lexeme is a numerical constant
	Execute the application. Observe output
	The token returns the value of the numerical constant

	TC_Scanner_004
	Lexeme is a character constant
	Execute the application. Observe output
	The token returns the value of the character constant

	TC_Scanner_005
	Consecutive white spaces or tabs
	Execute the application. Observe output
	The scanners behaves independent of the number of white spaces or tabs.

	TC_Scanner_006
	MultiLine comments
	Execute the application. Observe output
	The scanners behaves independent of single line or multiline comments

	TC_Scanner_007
	Source Program has a invalid character
	Execute the application. Observe output
	Scanner detects error and recovers considering the next character

	TC_Scanner_008
	Source program has a empty character constant.
	Execute the application. Observe output
	Scanner detects error and recovers considering the next character

	TC_Scanner_009
	Source program has a Character constant more than one character long
	Execute the application. Observe output
	Scanner detects error and recovers by skipping the current line and considering the next line.

	TC_Scanner_010
	Comments not terminated properly
	Execute the application. Observe output
	Scanner detects error and ignores rest of program

	TC_Scanner_011
	The longest substring principle
	1. Include words like "Beginner" and ">=" and observe output
	The scanner obeys the longest substring principle

3.2. Design of Parser
The Parser constructed is a Recursive Descent Parser. Recursive Descent parsing is a top down method of syntax analysis in which we execute a set of recursive procedures to process the input. A procedure is associated with each non terminal of a grammar. The lookahead symbol unambiguously determines the procedure selected for each nonterminal. The sequence of Procedures called in processing the input implicitly defines a parse tree for the input.

After modifying the original grammar to remove left recursion and left factoring to make grammar feasible for recursive descent parsing, we get 30 nonterminals.

For each nonterminal there is a function which implements the production rules for the nonterminal. Hence we have 30 such functions.

Also there is a function match() which advances to the next input token if its argument t matches the current token.

Parsing begins with call to the procedure for start symbol which is M().

If the source code has no lexical or syntactic errors the entire code is parsed and as an output we get the sequence of rules that derives the source code.

The rules are numbered as follows:

1#

M
---> program i; DI B

2#

DI
---> DV ML

3#

ML
---> MO ML

4#

ML
---> e

5#

ML
---> module i (VL) DV B

6#

DV
---> variables VL

7#

DV
---> e

8#

VL
---> V VLMORE

9#

VLMORE ---> VL

10#

VLMORE ---> e

11#

V
---> IL : T;

12#

T
---> integer AD

13#

T
---> char AD

14#

IL
---> i

15#

IL
---> IL,i

16#

AD
---> e

17#

AD
---> array [n]

18#

B
---> begin SL end;

19#

SL
---> S SLMORE

20#

SLMORE
---> SL

21#

SLMORE
---> e

22#

S
---> L SMORE

23#

S
---> if C then S else S

24#

S
---> loop SL end;

25#

S
---> exit;

26#

S
---> B

27#

S
---> read LN ;

28#

S
---> write Lo;

29#

S
---> e;

30#

SMORE
---> :=E;

31#

SMORE
---> (LN);

32#

LN
---> L LNMORE

33#

LNMORE
---> , LN

34#

LNMORE
---> e

35#

L
---> iAR

36#

LO
---> LR LOMORE

37#

LOMORE
---> , LO

38#

LOMORE
---> e

39#

LR
---> iAR

40#

LR
---> n

41#

LR
---> c

42#

AR
---> e

43#

AR
---> [E]

44#

E
---> F EMORE

45#

EMORE
---> + E

46#

EMORE
---> - E

47#

EMORE
---> e

48#

F
---> R FMORE

49#

FMORE
---> * F

50#

FMORE
---> / F

51#

FMORE
---> e

52#

R
---> L

53#

R
---> n

54#

R
---> (E)

55#

R
---> c

56#

C
---> E CMORE

57#

CMORE
---> = E

58#

CMORE
---> < E

59#

CMORE
---> > E

60#

CMORE
---> <= E

61#

CMORE
---> >= E

62#

CMORE
---> != E

If there is a error in the source code than the parsing stops after the first error but the lexical analysis still continue and appropriate error message are displayed in the listing of the program.

	Test Case No.
	Test Case Description / Purpose
	Test Procedure
	Expected Results

	TC__Parser_001
	Code having if-statements.
	Execute the application. Observe output
	Program is parsed properly without errors.

	TC__Parser_002
	Code having expression with complex nesting.
	Execute the application. Observe output
	Program is parsed properly without errors.

	TC__Parser_003
	Array variable passed to the module by the caller.
	Execute the application. Observe output
	Program is parsed properly without errors.

	TC__Parser_004
	Code having simple loops
	Execute the application. Observe output
	Program is parsed properly without errors.

	TC__Parser_005
	Code having Read and Write statement reading multiple parameters and writing multiple parameters
	Execute the application. Observe output
	Program is parsed properly without errors.

	TC__Parser_006
	Code having nested loops
	Execute the application. Observe output
	Program is parsed properly without errors.

	TC_Parser_007
	Key word 'begin' missing for a compound statement.
	Execute the application. Observe output
	Error indicated stating that the keyword is missing.

	TC_Parser_008
	Key word 'module' at the beginning of the module definition.
	Execute the application. Observe output
	Error indicated stating that the keyword is missing.

	TC_Parser_009
	 'program' is not the first word of the program.
	Execute the application. Observe output
	Error indicated stating that the keyword is missing.

	TC_Parser_010
	Variable declaration without the word 'variables'
	Execute the application. Observe output
	Error indicated stating that the keyword is missing.

	TC_Parser_011
	During declaration of variable datatype is not integer or char.
	Execute the application. Observe output
	Error indicated stating that datatype should be integer or char.

	TC_Parser_012
	Relational operator not used in condition statement
	Execute the application. Observe output
	Error indicated stating that relational operator expected.

	TC_Parser_013
	Array variable defined with limit as an variable and not a number.
	Execute the application. Observe output
	Error indicated stating that number is expected.

	TC_Parser_014
	Statement not properly terminated by a semicolon
	Execute the application. Observe output
	Error indicated stating the same.

	TC_Parser_015
	Module call with parameters separated by spaces rather than comma.
	Execute the application. Observe output
	Error indicated stating that the parameters should be separated by comma.

	TC_Parser_016
	No ':' before datatype during variable definitions.
	Execute the application. Observe output
	Error indicated stating the same.

	TC_Parser_017
	Module call with parameters as integer numbers.
	Execute the application. Observe output
	Parameters can only be variables. Error indicated stating that variable expected.

	TC_Parser_018
	Missing brackets in expression
	Execute the application. Observe output
	Error indicated stating the same.

	TC_Parser_019
	Number of parameters in module call less than the number of parameters defined in the module.
	Execute the application. Observe output
	No error indicated. Not a syntactic error.

	TC_Parser_020
	The type of the parameter passed in module call doesn’t match the type of the parameter defined in module definition.
	Execute the application. Observe output
	No error indicated. Not a syntactic error.

	TC_Parser_021
	Expression having mixture of integer and char types.
	Execute the application. Observe output
	No error indicated. Not a syntactic error.

	TC_Parser_022
	Assignment of value of integer type to a variable of char type.
	Execute the application. Observe output
	No error indicated. Not a syntactic error.

3.3. Design of Symbol Table
The symbol table is basically a hash table with horizontal chaining. A hash table -symbol table organization is beneficial because the symbol table is frequently searched and to make the search more efficient the hash tables are used. Also the entries in the table are dynamically made. Each bucket is a link list where one record is pointing to another. Hence because of such a dynamic allocation the only limit on the number of identifiers in the source program is the memory. Also because of dynamic allocation there is no limit on the size of lexeme.

Each entry of symbol table is defined as:

struct symTabType

{

 struct nextprev link; //next pointer

 char* lexeme; //pointer to lexeme

 int kindof; //kindof symbol (simple=1, array=2, module=3, program=4,

 reserved word)

 int type;

 // int=1,char=2, 0 if not applicable

 int scope;

 //decl in main=0 or module=1.

 int active;

 //active=1 , not active=0;

 char* alias; //alias name during code generation

 void* addInfo; //additional information depending upon the type

};

Each field can be explained as follows:

nextprev : This is the link to the next symbol table entry in the same bucket. It is

 used for horizontal chaining.
lexeme: This is the actual string representing that symbol.

kindof: This is indicates what kindof symbol it is.

simple=1, array=2, module=3, program=4, reserved word = the numerical representation of the reserved word.

type :
This stores the type of the variable. If the symbol is not a variable then this value is 0.

integer =1, char=2, for all other symbols =0

scope:
This indicates the scope of a variable whether global or defined within a function.

declared in main=0 , declared in module =1

active: if the symbol is currently active then 1 else if the symbol is not active (deleted) then 0.

alias: this is the name of the variable when it will be allocated on the stack during code generation.

addInfo: This void pointer is used to store additional information depending on the type of symbol.

If an array then size of array is stored.

If a variable then NULL

If a module then the number of parameters passed, total number of variables and pointer to each variable is stored.

Due to the use of a void pointer a lot of space is saved.

Hash Function:

The hash function is simple mod function. The maximum size of the hash table is fixed, say HASHTABSIZE. For every lexeme the hashkey(h) is calculated as follows:

If the lexeme is made of characters c1 to cn i.e. c1…cn then

h= (An-1 c1 + An-2 c2 + …….+ A cn-1 + cn) mod HASHTABSIZE;

(………………………..COMPILER CONSTRUCTION, LOUDEN, PG 298)

In the program A =2 and HASHTABSIZE=101 and n=5 (max) i.e. if a lexeme is greater than 5 characters then only the first 5 characters are considered to calculate the hash key, this ensures that there is no overflow. The hashkey is the hash table bucket where the symbol is inserted.

HASHTABSIZE (101) is taken a big enough prime number to reduce clashes and keep the horizontal chains as small as possible to increase efficiency of search.

Insertion:

Initially the keywords are inserted into the hash table by the function init().

Hence when a lexeme is searched in the symbol table using search_symtab() and is found in the symbol table then the check is if it is a keyword. If it is found to be a keyword the appropriate token is passed. If it is not a keyword and lexeme is found in the symbol table then pointer to the symbol table entry is passed with the token. If the lexeme is not found in the symbol table then the lexeme is sent with the token and is inserted in the symbol table during parsing of a variable declaration statement. If the head of a horizontal chain contains a reserved word then the new symbol is inserted after the reserved word else the new symbol is inserted in the head of the list. Hence if two variables having the same name one defined in main and other in a module then the variable in the module will be found first while searching the horizontal chain.

Deletion:

During declaration of symbols in modules, the symbols are inserted in the symbol table. Now when the module ends, the variables declared go out of scope and so they are deleted from the symbol table. Deletion is done by making the active attribute of the symbol table entry =0. The entries are not physically deleted because the information is required while code generation. This is done by purge() function which is called at the end of every module.

A view of the symbol table during the execution of a program looks like following:

(array variable) (name of program)

buckets

	0

	1

	2

	3

	4

	5

	6

	7

	8

	9

	.

.

.

.

.

.

.

.

.

.

.

	97

	98

	99

	100

 (size of the array)

 (name
 of module)

Hash Table

(no. of parameters, total no. of variables, symbol table pointers)

	Test Case No.
	Test Case Description / Purpose
	Test Procedure
	Expected Results

	TC_Symbol_Table_001
	Declaration of two variables having the same name in the same module
	Execute the application. Observe output
	The second symbol is not entered in the symbol table and error indicated

	TC_Symbol_Table_002
	Symbols declared on different lists.
	Execute the application. Observe output
	Both the symbols are entered in the symbol table if both are distinct

	TC_Symbol_Table_003
	Declaration of a variable in module having the same name as that of the program.
	Execute the application. Observe output
	No error indicated as the two symbols have different scope.

	TC_Symbol_Table_004
	Declaration of a variable in module having the same name as the module in which it is declared
	Execute the application. Observe output
	Variable Redeclaration error is indicated.

	TC_Symbol_Table_005
	Declaration of a variable in module having the same name as some other module
	Execute the application. Observe output
	No error indicated as the two symbols have different scope.

	TC_Symbol_Table_006
	Module having a name as that of a global variable.
	Execute the application. Observe output
	No error indicated as the two symbols have different scope.

	TC_Symbol_Table_007
	Two Modules having the same name
	Execute the application. Observe output
	Variable Redeclaration error is indicated.

	TC_Symbol_Table_008
	Variable name used in a statement which is not a global nor a locally defined variable
	Execute the application. Observe output
	Variable not Declared error indicated.

	TC_Symbol_Table_009
	Variable name used in a statement which is a global variable but not locally defined
	Execute the application. Observe output
	No error indicated, the global variable declaration is used.

	TC_Symbol_Table_010
	Variable name used in a statement which is not a global but is locally declared
	Execute the application. Observe output
	No error indicated, the local variable declaration is used.

	TC_Symbol_Table_011
	Variable name used which is globally as well as locally defined
	Execute the application. Observe output
	No error indicated, the local variable declaration is used.

	TC_Symbol_Table_012
	Variable defined in one module and used in another module
	Execute the application. Observe output
	Variable not Declared error indicated in the second module.

	TC_Symbol_Table_013
	Variable defined in a module and used in main
	Execute the application. Observe output
	Variable not Declared error indicated in main.

	TC_Symbol_Table_014
	Program Syntactically correct but has Semantic errors.
	Execute the application. Observe output
	Parsing continues as there are no Syntactic errors.

	TC_Symbol_Table_015
	Program Semantically correct but has Syntactic errors
	Execute the application. Observe output
	Parsing stops with the detection of the first error.

3.4. Description of the Intermediate Code
Three code is implemented as 4-tuple. Each three address code is a quadruple. For each quadruple the first tuple specifies the operation, the next two elements are the operands, the fourth is the address of the result. If the operands are not required NULL is indicated.

Three address code operators:

Operator
Description

PLUS

plus

MINUS
minus

MULT

multiply

DIV

divide

ASSN

assignment operator

LT

less than

GT

greater than

EQ

equal to

LE

less than equal to

GE

greater than equal to

NE

not equal to

OPBOX
open box bracket

CLBOX
close box bracket

COMMA
comma

COLON
colon
OPB open bracket

CLB

close bracket

READ

read

-

WRITE
write

IF_F

if condition false

LABEL
label

JMP

unconditional jump

ENTRY
module entry point

RET

return for a module

CALL

call module

ARG

argument of the module

ENTRY_MAIN main program entry point

START
this is always the first instruction in the intermediate code, which contains the special label “startLabel” so that the control goes to the instruction where the actual execution should begin.

REARRAY
for reverse assignment of values to the array variables

HALT

halt program end

Three address code:

1) Assignment Statement:

eg.

i := (abc+xyz)-(xyz+4);
Three address code:

PLUS abc xyz t1

PLUS xyz 4 t2

MINUS t1 t2 t3

ASSN i t3 NULL
Where t1,t2,t3 are temporary variables.

2) if Statement

eg.

if i=1 then

i:=a+b;

else

i:=a-b;

Three address code:

EQ i 1 t1

//condition i=1
IF_F t1 L1 NULL
//if condition false then jump to L1
PLUS a b t2

ASSN i t2 NULL

JMP L2 NULL NULL //skip the else part
LABEL L1 NULL NULL //else part starts here
MINUS a b t3
ASSN i t3 NULL

LABEL L2 NULL NULL //if the else part was skipped control comes here

3) Loop Statement

eg.

loop

a:=a+b;

i:=i+1;

if i < n then exit;else;

end;

Three address code:

LABEL L1 NULL NULL //indicates the start of loop

PLUS a b t2

ASSN a t2 NULL

PLUS i 1 t3

ASSN i t3 NULL

LT i n t4

//checking the condition in if statement
IF_F t4 L2 NULL

//if condition false jump to L2
JMP L3 NULL NULL
//exit statement
JMP L4 NULL NULL

LABEL L2 NULL NULL

LABEL L4 NULL NULL

JMP L1 NULL NULL
//continue looping if the condition was false
LABEL L3 NULL NULL // if exit was executed then control comes here

4) Read & Write statements

eg. read n,ave,total;
Three address code:

READ n NULL NULL

READ ave NULL NULL

READ total NULL NULL

eg.

write 'h','e','l','l','o';

WRITE h NULL NULL

WRITE e NULL NULL

WRITE l NULL NULL

WRITE l NULL NULL

WRITE o NULL NULL

5) Array variable

eg. res:=val[i];
Three address code:

OPBOX val i t1

ASSN res t1 NULL

Now if any value is assigned to t1 (temp variable) i.e. this value has to be assigned to the array element hence an additional statement is inserted for reverse assignment which is

REARRAY val i t1

6) Module Definition

Eg

module sort (n,res :integer;)

/*variable definition and module code*/

end;

ENTRY sort NULL NULL
//module entry point

/*code for other statements*/

RET NULL NULL NULL
//return to the caller from the module
7) START statement

This is always the first instruction in the intermediate code, which contains the label “startLabel” so that the control goes to the instruction where the actual execution should begin.

Three address code:

START startLabel NULL NULL
/*three address code modules*/

LABEL startLabel NULL NULL
“startLabel” is a unique label which is just before the first instruction of main program.
8) Main program

eg.

/*program header and module definitions*/

begin

/*program main body*/

end;

Three address code:

/*code for modules*/

ENTRY_MAIN NULL NULL NULL
//entry to main program

/*code for other statements*/

HALT NULL NULL NULL

//end of program
9) Call of a module

eg. sort(n,total);

ARG n NULL NULL

//argument n

ARG total NULL NULL
//argument total

CALL sort NULL NULL
//actual call to module sort

Note: In the Quadruple the operator and the 3 operands are not stored as strings. The operator is stored as an integer and the Symbol Table pointer to the operands is stored. In the above quadruples they appear as strings only for display purpose.

The generation of the intermediate code is directed by the syntax. Syntactic analysis was done using Recursive decent parsing techniques. Now here jus after the syntax is checked the semantic analysis is done and the attributes (depending on the function) are passed to the calling function.

Three types of attributes were identified and there definition can be given as follows:

typedef struct

{

int type; //symbol=1, number=2,char const=3

union

{

symTabTypePtr ptSymTab;

int numVal;

char ch;

}mainAttr;

} attribute;

Depending upon whether the token is a symbol or integer number or character constant the relevant information is stored in “attribute” and returned to the caller.

typedef struct

{

int opr;

attribute operands;

} attribute2;

For expression the operator and the right side operand is stored in “attribute1” and returned to the caller.

typedef struct

{

int num;

attribute attrList[20];

} attribute3;

For statements such as module call, or reading a list of variables or write a list of values, “attribute3” is used to store the number of parameters and there List.

The manipulation function used are as follows:

1) nextTemp():

This function generates the next temporary variable and inserts it in the symbol table. Returns symbol table pointer to the inserted symbol.

2) nextLabel():

This function generates the next Label and returns pointer to the label.

Each quadruple is stored in a link list whose head is pointed by global pointer intCode.

3) generate():

This function is used to generate a quadruple. This adds a node to the link list of quadruples.

Display of the intermediate code is just the traversal of the link list storing the code.

4) typeCheck()

This function is used to check the type of the two operands that are passed to the function. If there is a type mismatch appropriate errors are indicated.

After generation of the intermediate code the link list in which the code is stored will be traversed to generate the Code for the Moon machine.

Note: Intermediate code generation stops after the detection of the first error.
	Test Case No.
	Test Case Description / Purpose
	Test Procedure
	Expected Results

	TC__Intermediate_Code_001
	Code having if-statements.
	Execute the application. Observe output
	Three address code properly generated.

	TC__Intermediate_Code_002
	Code having expression with complex nesting.
	Execute the application. Observe output
	Three address code properly generated irrespective of the level of nesting.

	TC__Intermediate_Code_003
	Array variable passed to the module by the caller.
	Execute the application. Observe output
	No error indicated as long as the parameters match in number, order and type.

	TC__Intermediate_Code_004
	Code having nested loops statements.
	Execute the application. Observe output
	Three address code properly generated irrespective of the level of nesting.

	TC__Intermediate_Code_005
	Code having Read and Write statement reading multiple parameters and writing multiple parameters
	Execute the application. Observe output
	Three address code properly generated.

	TC__Intermediate_Code_006
	Number of parameters in module call greater than the number of parameters defined in the module.
	Execute the application. Observe output
	Error indicated stating that the number of parameters in the call are greater.

	TC_Intermediate_Code_007
	Number of parameters in module call less than the number of parameters defined in the module.
	Execute the application. Observe output
	Error indicated stating that the number of parameters in the call are less.

	TC_Intermediate_Code_008
	The type of the parameter passed in module call doesn’t match the type of the parameter defined in module definition.
	Execute the application. Observe output
	Error indicated stating type mismatch.

	TC_Intermediate_Code_009
	Expression having mixture of integer and char types.
	Execute the application. Observe output
	Error indicated stating type mismatch.

	TC_Intermediate_Code_010
	Assignment of value of integer type to a variable of char type.
	Execute the application. Observe output
	Error indicated stating type mismatch

	TC_Intermediate_Code_011
	Assignment of value of char type to a variable of integer type.
	Execute the application. Observe output
	Error indicated stating type mismatch

	TC_Intermediate_Code_012
	An simple variable(not an array) having a subscript in the expression.
	Execute the application. Observe output
	Error indicated stating illegal use of subscript.

	TC_Intermediate_Code_013
	An simple variable(not an array) having a subscript in an assignment statement.
	Execute the application. Observe output
	Error indicated stating illegal use of subscript.

	TC_Intermediate_Code_014
	An array variable having a character subscript.
	Execute the application. Observe output
	Error indicated stating that subscript should be only integer.

	TC_Intermediate_Code_015
	An array variable having a subscript which is the program name.
	Execute the application. Observe output
	Error indicated stating that subscript should be only integer.

	TC_Intermediate_Code_016
	An array variable having a subscript which is a module name.
	Execute the application. Observe output
	Error indicated stating that subscript should be only integer.

	TC_Intermediate_Code_017
	An array variable having a subscript which is a integer number.
	Execute the application. Observe output
	No error indicated.

	TC_Intermediate_Code_018
	An array variable having a subscript which is name of another array.
	Execute the application. Observe output
	Error indicated stating that subscript should be only integer.

	TC_Intermediate_Code_019
	An integer expression is the subscript of an array variable.
	Execute the application. Observe output
	Intermediate code generate

	TC_Intermediate_Code_020
	Type incompatibility in condition (may be an expression)
	Execute the application. Observe output
	Error indicated

	TC_Intermediate_Code_021
	An array variable been assigned explicit value.
	Execute the application. Observe output
	Error indicated stating that an array address cannot be changed.

3.5. Description of Code Generation

The code required to be generated is for the Moon machine. Hence the intermediate code is required to be transformed into code for Moon machine.

The Moon code for different operations in the Three address code is given as below:

Three address code operations:

1) WRITE

If a character constant has to be outputted on the console:

addi r3,r0, <the ASCII value of Charater>

putc r3

If an integer number has to be outputted on the console:

addi r1,r0, <integer number>

jl r15, putint

If a variable (integer) has to be outputted on the console:

lw r3, <variable>

add r1,r3,r0;

jl r15, putint

If a variable (char) has to be outputted on the console:

lb r3,<variable>

putc r3

2) Read

If a integer type variable is to be read:

jl r15,getint

sw <name of variable> ,r1

If a char type variable is to be read:

getc r1

sb <name of variable>, r1

3) Conditional Statements (LT, GT,LE, GE, EQ, NE)

Two integer variables are compared to know if they are equal

eg.

lw r5, <variable1>
/*load first var*/

lw r6, <variable 2>
/*load second var*/

ceq r7,r5,r6

/*check for equality*/

sw <temp variable> ,r7 /*store result in temp variable*/

similar operation can be done for different relational operators and
 different kind of of variable and constants combinations.

As these operations are similar they are all clubbed into one in the actual code.

4) IF_F

A quadruple with IF_F as operator can be converted into MOON code as:

eg.

lw r5, <temp variable>

bz r5, <label >

5) JMP

A quadruple with JMP as operator can be converted into MOON code as:

j <label>

6) LABEL

A quadruple with JMP as operator can be converted into MOON code as:

<label>

7) OPBOX

A quadruple with OPBOX as operator can be converted into MOON code as

eg.

Suppose we have a integer array element subscripted by a integer variable i, then

lw r6,<variable 2>

/*it is the subscript*/

muli r6,r6,4

/*multiply by 4 for getting the array location*/

lw r7,<variable 1> (r6)
/*load the element in register*/

sw <temp variable>,r7
/*load the value in temp variable*/

Similar sequence of actions can be carried out for char variable and subscripts that are integer constants.

8) REARRAY

A quadruple with REARRAY as operator can be converted into MOON code as

eg.

Suppose we have a integer array element subscripted by a integer variable i, then

lw r6,<variable 2>

/*it is the subscript*/

muli r6,r6,4

/*multiply by 4 for getting the array location*/

lw r7, <temp variables>
/*load value of temp variable*/

sw <variable 1 >(r6),r7
/*assign back the value of tempo variable to array element*/

9) Arithmetic operators (PLUS, MINUS, MULT, DIV)

A quadruple with arithmetic operator can be converted into MOON code as:

eg.

Suppose that two integer variables are required to be added, we have,

lw r5, <variable 1>
/*load variable 1*/

lw r6,< variable 2>
/*load variable 2*/

add r7,r5,r6

/*add the two variables*/

sw < temp variable>,r7
/*store result temp variable*/

Similarly all other cases with combination of char variables, array elements, different opeartors etc. can be handled.

10) ASSN

A quadruple with ASSN operator can be converted into MOON code as:

eg.

Suppose an integer variable is to be assigned another integer variable,

lw r6, <variable 2>
/*load the value to be assigned*/

sw <variable 1>,r6
/*store the value at the required location*/

Similarly all other cases with combination of char variables, array elements etc can be handled.

11) START

A quadruple with START operator can be converted into MOON code as

j startLabel

12) ENTRY

A quadruple with START operator can be converted into MOON code as

<name of module>

Also the total space on the stack that will be required by the parameters, local variable, temp variables of the module is calculated. This is the amount by which the stack pointer will be incremented when call to another module is given frm the current module.

13) RET

A quadruple with RET operator can be converted into MOON code as

lw r15,-4(r14)
/*read the return address and store in r15*/

jr r15

/*return frm module*/

14) ARG

A quadruple with ARG operator can be converted into MOON code as

The value of the variable in the quad is pushed on the stack,

eg.

Suppose a integer type variable is pushed on the stack and call to the module is from the main program,

lw r5, <argument variable>
/*the argument to be pushed is loaded*/

sw <stack location>,r5
/*argument pushed on the stack*/

There can be many cases involved here like arrays for which address is passed,

addi r5,r0, <array argument variable> /*address of array is loaded*/

sw <stack loacation> ,r5

 /*address of array is pushed*/

15) CALL

A quadruple with CALL operator can be converted into MOON code as

jl r15, <name of module>

With this statement certain other actions maybe required to be taken like adjusting the stack pointer, copy back the value of the return argument etc. Appropriate code for these activities is generated.

	Test Case No.
	Test Case Description / Purpose
	Test Procedure
	Expected Results

	TC__Code_Generation_001
	SLANG program having if-statements.
	Execute the application. Observe output
	MOON code generated and execute correctly.

	TC__Code_Generation_002
	Code having expression with complex nesting.
	Execute the application. Observe output
	MOON code generated and execute correctly.

	TC__Code_Generation_003
	Code having simple loop statement.
	Execute the application. Observe output
	MOON code generated and execute correctly.

	TC__Code_Generation_004
	Code having nested loops statements.
	Execute the application. Observe output
	MOON code generated and execute correctly.

	TC__Code_Generation_005
	Code having Read and Write statement reading multiple parameters and writing multiple parameters
	Execute the application. Observe output
	MOON code generated and execute correctly.

	TC__Code_Generation_006
	SLANG program having array variables
	Execute the application. Observe output
	MOON code generated and execute correctly.

	TC_Code_Generation_007
	An array variable having a subscript which is a integer number.
	Execute the application. Observe output
	MOON code generated and execute correctly.

	TC_Code_Generation_008
	An integer expression is the subscript of an array variable.
	Execute the application. Observe output
	MOON code generated and execute correctly.

	TC_Code_Generation_009
	SLANG program having module calls.
	Execute the application. Observe output
	MOON code generated and execute correctly.

	TC_Code_Generation_010
	SLANG program having modules that return value.
	Execute the application. Observe output
	Value is returned thru the last argument passed. MOON code generated and execute correctly.

	TC_Code_Generation_011
	SLANG program having module calls with parameters of type integer and char passed.
	Execute the application. Observe output
	MOON code generated and execute correctly.

	TC_Code_Generation_012
	SLANG program having module calls with entire array passed as a parameter.
	Execute the application. Observe output
	Arrays are passed by reference. MOON code generated and execute correctly.

	TC_Code_Generation_013
	SLANG program having module call from within another module.
	Execute the application. Observe output
	MOON code generated and execute correctly.

	TC_Code_Generation_014
	SLANG program having a module that has a module call to itself (Recursion).
	Execute the application. Observe output
	SLANG supports recursion. MOON code generated and execute correctly.

	TC_Code_Generation_015
	Slang program having array elements being passed.
	Execute the application. Observe output
	MOON code generated and execute correctly.

3.6. Run-Time Environment

Run-time Environment is the structure of the target computers registers and the memory that serves to manage memory and maintain the information needed to guide the execution process. There are three kinds of environments:

1) static environment

2) stack based environment

3) dynamic environment
The run-time environment implemented here is static as well as stack based. The main program variables (or global variables) are statically allocated. The allocation takes place at compilation time and they are allocated at the end of the code area. These variables are global in nature and can be accessed from any where in the program.

 In the moon code these variables are referred to by there name.

On the other hand, the argument variables of the module, the local variables defined in module as well as the temporary variables required for intermediate calculations are allocated on the stack at run time. Whenever the module is called first the arguments are pushed on the stack followed by allocation of memory on the stack for the local variables and temporary variables. When the module execution is over and the control comes back to the calling portion of the program, theses variables allocated on the stack are destroyed unlike global variable which are always alive throughout the program. Stack based run-time environment gives SLANG the power of having recursive modules, ability of the module to call itself.
3.7. Description of Error Handling
One of the most important function of a compiler is its response to errors in a source program. Errors are detected in all the phases of compilation. The compiler should be able to generate meaningful error messages and resume compilation after each error.

In the SLANG compiler if an error is detected in a particular phase the error is indicated in the listing and the parser gracefully terminates after the detection of the first error.

3.6.1 Lexical Error
1) Error 10: Invalid Character
 Characters which are not part of the programming language like &,! $ etc.

2) Error 11: Empty character constant

It is a null character constant like ‘’.

3) Error 12: Character constant can be only one character long

Character constants cannot be more than one character long.

eg. Ch= ‘a’; (correct)

 Ch=’abc’ (incorrect)

4) Error 14: Sudden termination of source program .. possibly comment not terminated
Comment started but not terminate.

3.6.2 Syntactic Error
1) Error 21: The keyword 'begin' or 'module' expected
2) Error 22: The keyword 'begin' or 'module' or 'variable' expected

3) Error 23: The datatype 'integer' or 'char' expected
4) Error 24: identifier or number or character constant
5) Error 25: '<' or '>' or '=' or '<=' or '>=' or '!=' expected

6) Error 100: Identifier expected

7) Error 101: Number expected

8) Error 102: Character Constant expected

9) Error 103: '(' expected

10) Error 104: ')' expected

11) Error 105: Missing ';' on or immediately before line number N
12) Error 106: '+' expected

13) Error 107: '-' expected

14) Error 108: '*' expected

15) Error 109: '/' expected

16) Error 110: ':=' expected

17) Error 111: '<' expected

18) Error 112: '>' expected

19) Error 113: '=' expected

20) Error 114: '<=' expected

21) Error 115: '>=' expected

22) Error 116: '!=' expected

23) Error 117: '[' expected

24) Error 118: ']' expected

25) Error 119: ',' expected between consecutive identifiers or numbers or character constants

26) Error 120: ':' expected after identifier or identifier list

27) Error 121: The keyword <keyword> is missing
3.6.3 Semantic Error

1) Error 26: Redeclaration of Symbol

If a lexeme is not found in the symbol table and the current statement is not a variable declaration or function declaration then the symbol has not been defined and error is indicated.

2) Error 27: Symbol Not Declared

If the current statement is a variable declaration or function declaration and there is already a lexeme in the symbol table with the same scope that means that two symbols with same names are defined then an error is indicated.

3) Error 28:Too Few Parameters for the Module Call

The number of parameters in the call of the module is less than the number of parameters in module definition.

4) Error 29:Too Many Parameters for the Module Call

The number of parameters in the call of the module is greater than the number of parameters in module definition.

5) Error 30:Type Mismatch for Module Call

The parameters in the call of the module does not match in type with the parameters in module definition.

6) Error 31:Incompatible Types

The expression has mixed types.

7) Error 32:Array Variable expected

An ordinary variable having a subscript.

8) Error 33:Subscript should be integer

Subscript if an array variable is not any integer variable or integer number.

9) Error 34:Array Address cannot be Explicitly changed

Array been assigned explicit address.

10) Error 35:Incompatible Types in the Assignment Statement

Assignment of value of one type to a variable of a different type.

3.8. Host Language
The host language of a compiler is the language in which the compiler is implemented. The host language for the SLANG compiler is C. C was chosen because of its wide range of functions, dynamic allocation ability and possibility of wide range of optimizations. C is extensively used in systems programming.
4. User Guide
SLANG is a flexible, high level structured programming language. Programs written in SLANG run only on Moon Machine. The Programs are not portable to any other machine. This guide is a complete reference for programming in SLANG.

4.1. SLANG Fundamentals
4.1.1 Identifiers and Keywords
Identifiers can be any combination of letters and digits but the first character of the identifier has to be alphabet. An identifier can be arbitrarily long.
There are certain reserved words that have standard predefined meaning in SLANG.

The reserved words are:

BEGIN
END

PROG

VAR

INT

ARRAY

CHAR

MODULE

IF

THEN

ELSE

LOOP

EXIT

READ

WRITE

4.1.2 Data Types
There are only two data types currently supported by SLANG.

1) Integer: A variable of this type can holds an integer quantity. In the Moon environment an integer is stored in 4 bytes.

2) Char: A variable of this type holds a character quantity. In the Moon environment an integer is stored in 1 bytes.

4.1.3 Constants
Slang has two basic constants namely
1) Integer Constants: It is a integer valued number. Thus it consist of a

 sequence of digits.

 eg. 125, 1000, 1250 etc.

2) Character Constant: It is a single character enclosed in apostrophes.

eg. ‘A’
 ‘x’
‘3’
‘$’
4.1.4 Variables and Array
A variable is an identifier that is used to represent specified type of information within a designated portion of the program. An variable can be of integer or char type.

eg. a: integer; /*declaration*/

 c: char;

a :=3;

c := ‘z’;
 /*assignment*/

An array is another kind of variable. An array is a collection of elements of the same type referred by the same name. different elements of the array can be referred by using a subscript. A subscript should always be an integer. An array always starts from subscript 0. Hence an array of n elements will have subscripts from 0 to n-1. The name of the array is the pointer to the first element of the array.
eg. a: integer array [5]; /*an integer array of 5 elements*/

a[0] :=125;

a[1]:=22;

.

.

.

4.1.5 Declaration
A declaration associates a group of variables with a specific data type. All variables must be declared before they appear in the executable statements. Variables can be declared alone of in groups. Variable are always declared at the start of the program or a module with ‘variables’ statement
eg.

variables

i:integer;

a, b, c: integer;

arrdat: char array[100];

4.1.6 Operators
Arithmetic Operators:

There are four arithmetic operators: + , - , * , / with there usual meanings.

There are six relational operators: <, >, <=, >=, = , != with there usual meaning.

4.1.7 Expressions
An expression may consist of variables, constants and array elements. An expression generally also contains operators to combine different entities.

eg.

x:= y;

x:= a + b;

x <= y

4.1.8 Statements
A statement indicates some action to be carried out. There are generally three types of statements namely expression statement, compound statement and control statement.

An expression statement consist of expression followed by a semicolon.

A compound statement starts with ‘begin’ reserved word and ends with ‘end reserved word. A compound statement may have more compound statements within it.

An control statement always stats with reserved word ‘loop’ and ends with reserved word ‘end’.

4.1.9 Comments
Comments in SLANG start with /* and end with */. Comments in SLANG are multi line as in C.
4.2. Data Input and Output
An input/output function can be used any where in the program by simply writing the function name followed by arguments.
There are two input and output functions namely read and write.

1) read: This function is used to read a value from the console into a variable.
Using this function we can read a variable or a group of variables.

General form,

read <list of variables>

eg.

read n;

read a,b,c; /* variable list separated by comma */

2) write: This function is used to print the value of a variable or character constant or a integer constant on the console. It can print single, multiple as well as a combination of values.

General form,

write <any combination of variables or char constants or integer constants>

eg.

 write n;

 write 'e','n','t','e','r',' ','t','h','e',' ','v','a','l','u','e',' ','o','f',' ','n',' ',':';
 write a,b,c;

 write 1250;

Every write statement introduces a newline automatically. Hence the output of two consecutive write statements will be on two consecutive lines.

eg. write ‘h’,’e’,’l’,’o’,’o’;

write ‘w’,’o’,’r’,’l’,’d’;

write ‘h’,’e’,’l’,’o’,’o’, ‘w’,’o’,’r’,’l’,’d’;

O/P of the above statements will be:

hello

world

helloworld

4.3. Conditional and Control Statements
There is one conditional and one control statement in SLANG.
1) if –then-else: It is used to carry out a logical test and then take one of the two possible actions, depending on the outcome of the test.

General form,

if <conditional statement > then <statement> else <statement>

The statement may be simple statements or compound statements bracketed by begin and end.

The condition statement uses relational operators and if that condition is true then the then part is executed and if the condition is false then the else part is executed.

eg.
if i=j then

i:=a+b;

 else

i:=a-b;

if i != n then

i:=a+b;

 else;
/*observe here else can be an empty statement*/

2) loop: It can be used for doing looping operations.

General form,

loop <list of statements> end;

a loop is always terminated with a if statement of the type

if <condition> then exit; else;

exit statement is used to jump out of the current loop.

eg.

loop

/*loop for printing the array elements*/

write a[i];

i:=i+1;

if i=n then exit;else; /*terminating condition*/
end;

Loops can be nested one within another. Nesting of loops is very useful in a number of operations.

eg.

iCount:=0;

jCount:=0;

loop

jCount:=iCount+1;

loop

if arrdat[jCount]<arrdat[iCount] then

begin

temp:=arrdat[iCount];

arrdat[iCount]:=arrdat[jCount];

arrdat[jCount]:=temp;

end;

else;

jCount:=jCount+1;

if jCount>(n-1) then exit; else; /*terminating condition for the

 inner loop*/

end;

iCount:=iCount+1;

if iCount>(n-2) then exit; else;
/*terminating condition for the

 outer loop*/

end;
4.4. Modules
A module is a self contained program segment that carries out some specific task. A SLANG program can have one or more modules. There is no limit on the number of modules that can be defined in the program. Program execution always begins from the main body of the program. From here different modules will be called. A module can be accessed from any point in the program as long as it is defined before that point. After the module has carried out the intended task the control returns will return to the point from which the function was assessed.
4.4.1 Defining a Module
In general a module definition has three components like in any programming language, namely the first line, the argument and local variables declaration and the body of the module.

General form,

module <name of module> (<list of arguments>)
[variables

<definition of local variable>] /*optional*/

begin

<body of the module>

end;
The arguments allow information to be transferred from calling portion of the program to function. The arguments are local in the sense that they are not recognized outside of the module. There is no restriction on the number of arguments that are defined. Arguments may have same or different names than the corresponding arguments in the calling portion of the program. The last argument is always the return value. Every function has one argument at least.
4.4.2 Calling Module and Parameter Passing
A module can be called by specifying its name, followed by a list of arguments enclosed in parentheses and separated by commas. Every module has at least one argument. If a module does not require any value to be passed or no return value is required from a module, then a dummy variable is passed to the module.
General form,

<name of module>(<list of parameters>);

The strategy used for module calling is call by Value –Result. Each argument is passed by value. After the end of the module, the value of the last argument in the argument list is copied back in the corresponding variable in the calling portion of the program.

Special case is when entire array’s are passed to a module. Array can be passed to a module by specifying its name. Now name of the array is pointer to the first element of the array. Hence arrays are passed by reference. Hence any changes made to the passed array in the module will be automatically reflected in the calling portion of the program.

Also the parameters that are passed from the calling point of the program are always variables name or array elements or array names. Integer constants or character constants or expressions cannot be calling parameters.

eg.

/*module definition*/

module search(a:integer array[100]; n: integer;flag:integer;)

variables

i:integer;

begin

/*body of search*/

end;

begin /*main*/

/*other statements*/

search(arrayVariable,n,flag); /*arrayVariable is passed by reference and

 flag is the return value*/

end;

4.4.3 Return value from Module
The last argument is always the return value from the module. Also every module is required to have at least one argument. If there is only one argument then that is the return argument. Also if no value is required to be passed or returned then just pass a dummy variable.
4.4.4 Recursion

Recursion is a process by which a module calls itself repeatedly, until some specified condition has been satisfied. The process is for repetitive computations in which each action is stated in terms of a previous result. Many iterative problems can be written in this form. SLANG supports recursion cause of its run-time environment is static as well as stack based.
Two classical examples of recursion are factorial of a number and Fibonacci series.

eg.

factorial of a number n,

module factorial (n :integer; fac:integer;)

variables

n1:integer;

begin

if n<2 then

 fac:=1;

else

begin

n1:=n-1;

factorial(n1,fac);
/*recursive call to module*/

fac:=n*fac;

end;

end;

the nth element of the Fibonacci series,

module fibonacci (n :integer;fib:integer;)

variables

fib1,fib2,n1:integer;

begin

if n<3

then fib := 1;

else

begin

n1:=n-1;

fibonacci(n1,fib1);
/*recursive call to module*/

n1:=n-2;

fibonacci(n1,fib2);

fib := fib1+fib2;

end;

end;
Also Divide and Conquer algorithms are implemented recursively. Two classical divide and conquer algorithms are finding the maximum element of an array and binary search.

eg.

maximum element of an array,

module maxarray(a:integer array[20]; l:integer; r:integer; max:integer;)

variables

m,u,v:integer;

begin

if l=r then

max:= a[l];

else

begin

m:=(l+r)/2;

maxarray(a,l,m,u);

m:=m+1;

maxarray(a,m,r,v);

if u>v then

max:=u;

else max:=v;

end;

end;

binary search for an element in a sorted array,

module binarysearch(a:integer array[20]; l:integer; r:integer;

 value:integer; flag:integer;)

variables

m,u,v:integer;

begin

m:=(l+r)/2;

if a[m]=value then

flag:=1;

else

if m!=l then

if m!=r then

if a[m]>value then

binarysearch(a,l,m,value,flag);

else

begin

m:=m+1;

binarysearch(a,m,r,value,flag);

end;

else;

else;

end;

4.5. Compiling a SLANG program
The SLANG program listing can be compiled by using the SLANG compiler as follows:

If the program is written in the file sort.txt then we have,

C:\> compiler sort.txt

The results of the different stages of compilation can be seen as,
printout.txt – the listing of the source program

tokenout.txt – the token found in the source program

production.txt – the productions used for parsing the source program

symtab.txt – the state of the symbol table at the end of each module and the

 program
intercode.txt – the intermediate code generated

code.txt – the MOON code generated from the source program which can be

 directly executed on the MOON Processor.
5. Efficiency
1) A compiler uses many data structures and one of the most crucial data structure is the Symbol Table. For every new word read by the compiler from the source program it has to search if that symbol is a reserved word or the symbol is already defined or if it is already defined what is its scope and so on. The symbol table contains loads of information which builds during different phases of compilation and ultimately helps the compiler in compiling the program. Hence the symbol table organization is crucial for the efficiency of the compiler.

As explained in section 3,

· The symbol table is a hash table with horizontal chaining.
· Horizontal chains are maintained as dynamic link lists.
· Due to dynamic allocation the only limit on the number of identifiers in the source program is the memory
· The hash function is of the type

h= (An-1 c1 + An-2 c2 + …….+ A cn-1 + cn) mod HASHTABSIZE

which facilitates minimum collision.

· Hash table has 101 buckets big enough to avoid collisions

· The symbol table is initialized with the reserved words. Hence whenever a word is searched first it will be compared with reserved word in that bucket (if any) and if its not a reserved word then other symbol in that bucket are searched.

· Whenever a symbol is entered into the symbol table pointer to that symbol is remembered in the rest of the program. Hence searching the symbol table is kept to its minimum. Whenever information of a symbol is required it is obtained by following its symbol table pointer.
2) The source program is parsed using Recursive Decent parser. Hence additional overhead of maintaining a parsing table and referring it to make the parsing decisions is not required.

3) Intermediate code is maintained in a link list, hence insertion of labels or any additional statements in the middle is easy and fast. Also such a structure helps in code generation as traversing a link list is faster than reading the intermediate code file.

4) The Compiler is actually a two-pass compiler. After the intermediate code is stored in the link list in the first pass, the intermediate code is traversed again to generate the MOON code. Two pass compiler are always slow than one pass compiler.

5) The Code generated by the compiler cannot be termed as efficient as:
· After any manipulation the temporary values are calculated n stored immediately in temporary variables only to be reloaded in the next few instructions.

· Temporay variables are generated in a sequential manner and never reused.

· No Code optimization is included in the compiler design.
6. Design Decisions
Possible Improvements/Re- Design:

· The run-time environment is static for main program and stack based for modules which can be changed completely to stack based. This is so because the project was build iteratively and whatever worked in previous phases was not changed. It was thought that static allocation would be enough to run simple programs and no support for recursion would be given. But as the project build the requirements were understood better and hence stack based run-time environment was preferred for modules.

· Due to static allocation of the global variables (main program variable) with names as they are defined in SLANG code, use of variables whose name is same as the name of an Opcode of MOON assembly language is forbidden.
eg.

variables

j : integer;

Now j cannot be defined as a global variable as ‘j’ in MOON assembly language is the Opcode of Jump instruction.

Stack based run-time environment for main program will solve this issue.

· The compiler is actually a two-pass compiler. After generation of intermediated code in the first pass, the intermediate code is traversed again to generate the MOON code. These two passes can be combine into a single pass which would definitely increase the speed of compilation

· The temporary variables generated are of the type t<integer subscript> and labels generated are of the type L<integer subscript>. Names of these variables cannot be used in a SLANG program.
· Arrays that are defined in a module are allocated statically and when the module is called the address of the first location of the array is pushed at the appropriate location on the stack. This was one of the side effects of having a combination of static and a stack based run- time environment.

Having a uniform Stack based run-time environment would allow arrays defined in a module to be allocated on the stack.

· In the actual code of the compiler, global variables have been used, though global variables give the advantage of easy passage of information to different functions, but the disadvantage is that debugging the program becomes difficult.

If the code is re written the use of global variables will be minimized.

7. Appendix A: Some Test Case Results

7.1. Lexical Analysis
1) TC_Scanner_007

1: program simpleprogram;

2: variables

3: ave,total,n: integer;

4:

5: module simple (n,res :integer;)

6:

7: variables

8: i,b,a,c,d: integer;

9: val: integer array[100];

10: begin

11:

12: res:=0;

13:

14: i:=((a+b)*(c+d))/((a*b)$;

Error 10: Invalid Character on line number 14

15:

16: end;

17:

18:

19: begin

20: begin

21: read n;

22: simple(n,total);

23: end;

24: ave:= (((total/ n)));

25: write 'h','e','l','l','o';

26: write ave;

27: end ;/*end of program*/

28:

--

Compiler Version: 1.0

Date of Compilation : 20/4/2004, Time: 14:24:36

Total Number of Lines Compiled: 28

Lexical Errors in Source Code...... Parsing Stopped after first error

2) TC_Scanner_009

1: program simpleprogram;

2: variables

3: ave,total,n: integer;

4:

5: module simple (n,res :integer;)

6:

7: variables

8: i,b,a,c,d: integer;

9: val: integer array[100];

10: begin

11:

12: res:=0;

13:

14: i:=((a+b)*(c+d))/((a*b);

15:

16: end; /*end of module*/

17:

18:

19: begin

20: begin

21: read n;

22: simple(n,total);

23: end;

24: ave:= (((total/ n)));

25: write 'h','e','l','l','o world';

Error 12: Character constant can be only one character long,line number 25

26: write ave;

27: end ;

28:

7.2. Syntactic Analysis
3) TC_Parser_007

1: program simpleprogram;

2: variables

3: ave,total,n: integer;

4:

5: module simple (n,res :integer;)

6:

7: variables

8: i,b,a,c,d: integer;

9: val: integer array[100];

10: begin

11:

12: res:=0;

13:

14: i:=((a+b)*(c+d))/((a*b);

15:

16: end; /*end of module*/

17:

18:

19: begi

Error 21: The keyword 'begin' or 'module' expected on line number 19

20: begin

21: read n;

22: simple(n,total);

23: end;

24: ave:= (((total/ n)));

25: write 'h','e','l','l','o';

26: write ave;

27: end ;

28:

4) TC_Parser_011

1: program simpleprogram;

2: variables

3: ave,total,n: int;

Error 23: The datatype 'integer' or 'char' expected on line number 3

4:

5: module simple (n,res :integer;)

6:

7: variables

8: i,b,a,c,d: integer;

9: val: integer array[100];

10: begin

11:

12: res:=0;

13:

14: i:=((a+b)*(c+d))/((a*b);

15:

16: end; /*end of module*/

17:

18:

19: begin

20: begin

21: read n;

22: simple(n,total);

23: end;

24: ave:= (((total/ n)));

25: write 'h','e','l','l','o';

26: write ave;

27: end ;

28:

5) TC_Parser_012

1: program simpleprogram;

2: variables

3: ave,total,n: integer;

4:

5: module simple (n,res :integer;)

6:

7: variables

8: i,b,a,c,d,flag: integer;

9: val: integer array[100];

10: begin

11:

12: flag:=0;

13:

14: if flag then

Error 25: '<' or '>' or '=' or '<=' or '>=' or '!=' expected on line number 14

15:
i:=((a+b)*(c+d))/((a*b);

16: else;

17:

18: end; /*end of module*/

19:

20:

21: begin

22: begin

23: read n;

24: simple(n,total);

25: end;

26: ave:= (((total/ n)));

27: write 'h','e','l','l','o';

28: write ave;

29: end ;

30:

6) TC_Parser_016

1: program simpleprogram;

2: variables

3: ave,total,n integer;

Error 120: ':' expected after identifier or identifier list on line number 3

4:

5: module simple (n,res :integer;)

6:

7: variables

8: i,b,a,c,d,flag: integer;

9: val: integer array[100];

10: begin

11:

12: flag:=0;

13:

14: if flag =1

15: then

16:
i:=((a+b)*(c+d))/((a*b);

17: else;

18:

19: end; /*end of module*/

20:

21:

22: begin

23: begin

24: read n;

25: simple(n,total);

26: end;

27: ave:= (((total/ n)));

28: write 'h','e','l','l','o';

29: write ave;

30: end ;

31:

7) TC_Parser_018

1: program simpleprogram;

2: variables

3: ave,total,n: integer;

4:

5: module simple (n,res :integer;)

6:

7: variables

8: i,b,a,c,d,flag: integer;

9: val: integer array[100];

10: begin

11:

12: flag:=0;

13:

14: if flag =1 then

15:
i:=((a+b)*(c+d))/((a*b;

Error 104: ')' expected on line number 15

16: else;

17:

18: end; /*end of module*/

19:

20:

21: begin

22: begin

23: read n;

24: simple(n,total);

25: end;

26: ave:= (((total/ n)));

27: write 'h','e','l','l','o';

28: write ave;

29: end ;

30:

7.3. Semantic Analysis (Symbol Table)
8) TC_Symbol_Table_001

1: program simpleprogram;

2: variables

3: ave,total,n :integer;

4:

5: module simple (n,res :integer;)

6:

7: variables

8: i,b,a,c,d,flag: integer;

9: i: char;

10: begin

Error 26:Redeclaration of Symbol i on line number 9

11:

12: flag:=0;

13:

14: if flag =1

15: then

16:
i:=((a+b)*(c+d))/((a*b);

17: else;

18:

19: end; /*end of module*/

20:

21:

22: begin

23: begin

24: read n;

25: simple(n,total);

26: end;

27: ave:= (((total/ n)));

28: write 'h','e','l','l','o';

29: write ave;

30: end ;

31:

9) TC_Symbol_Table_008

1: program simpleprogram;

2: variables

3: ave,total,n :integer;

4:

5: module simple (n,res :integer;)

6:

7: variables

8: i,b,a,c,d,flag: integer;

9:

10: begin

11:

12: flag:=0;

13:

14: if flag =1

15: then

16:
i:=((a+b)*(c+d))/((a*b);

17: else;

18:

19: j:= j+1;

Error 27:Symbol j Not Declared on line number 19

20:

21: end; /*end of module*/

22:

23:

24: begin

25: begin

26: read n;

27: simple(n,total);

28: end;

29: ave:= (((total/ n)));

30: write 'h','e','l','l','o';

31: write ave;

32: end ;

33:

7.4. Intermediate Code Generation
10) TC__Intermediate_Code_006

1: program simpleprogram;

2: variables

3: ave,total,n :integer;

4:

5: module simple (n,res :integer;)

6:

7: variables

8: i,b,a,c,d,flag: integer;

9:

10: begin

11:

12: flag:=0;

13:

14: if flag =1

15: then

16:
i:=((a+b)*(c+d))/((a*b);

17: else;

18:

19:

20: end; /*end of module*/

21:

22:

23: begin

24: begin

25: read n;

26: simple(n,total,ave);

27: end;

Error 29:Too Many Parameters for the Module Call on line number 26

28: ave:= (((total/ n)));

29: write 'h','e','l','l','o';

30: write ave;

31: end ;

32:

11) TC_Intermediate_Code_008

1: program simpleprogram;

2: variables

3: ave,total,n :integer;

4: ch:char;

5: module simple (n,res :integer;)

6:

7: variables

8: i,b,a,c,d,flag: integer;

9:

10: begin

11:

12: flag:=0;

13:

14: if flag =1

15: then

16:
i:=((a+b)*(c+d))/((a*b);

17: else;

18:

19:

20: end; /*end of module*/

21:

22:

23: begin

24: begin

25: read n;

26: simple(n,ch);

27: end;

Error 30:Type Mismatch for Module Call on line number 26

28: ave:= (((total/ n)));

29: write 'h','e','l','l','o';

30: write ave;

31: end ;

32:

12) TC_Intermediate_Code_009

1: program simpleprogram;

2: variables

3: ave,total,n :integer;

4: ch:char;

5: module simple (n,res :integer;)

6:

7: variables

8: i,b,a,c,d,flag: integer;

9:

10: begin

11:

12: flag:=0;

13:

14: if flag =1

15: then

16:
i:=((a+b)*(c+d))/((a*ch);

Error 31:Incompatible Types on line number 16

17: else;

18:

19:

20: end; /*end of module*/

21:

22:

23: begin

24: begin

25: read n;

26: simple(n,total);

27: end;

28: ave:= (((total/ n)));

29: write 'h','e','l','l','o';

30: write ave;

31: end ;

32:

13) TC_Intermediate_Code_013

1: program simpleprogram;

2: variables

3: ave,total,n :integer;

4: ch:char;

5: module simple (n,res :integer;)

6:

7: variables

8: i,b,a,c,d,flag: integer;

9:

10: begin

11:

12: flag:=0;

13:

14: if flag =1

15: then

16:
i:=((a+b)*(c+d))/((a*b);

17: else;

18:

19: a[i]:=100;

Error 32:Array Variable expected on line number 19

20:

21: end; /*end of module*/

22:

23:

24: begin

25: begin

26: read n;

27: simple(n,total);

28: end;

29: ave:= (((total/ n)));

30: write 'h','e','l','l','o';

31: write ave;

32: end ;

33:

14) TC_Intermediate_Code_021

1: program simpleprogram;

2: variables

3: ave,total,n :integer;

4: ch:char;

5: module simple (n,res :integer;)

6:

7: variables

8: i,b,a,c,d,flag: integer;

9: arrdat:integer array [10];

10:

11: begin

12:

13: flag:=0;

14:

15: if flag =1

16: then

17:
i:=((a+b)*(c+d))/((a*b);

18: else;

19:

20: arrdat:= 100;

21: end; /*end of module*/

Error 34:Array Address cannot be Explicitly changed on line number 20

22:

23:

24: begin

25: begin

26: read n;

27: simple(n,total);

28: end;

29: ave:= (((total/ n)));

30: write 'h','e','l','l','o';

31: write ave;

32: end ;

33:

7.5. Code Generation

15) TC__Code_Generation_004

1: program sorting;

2:

3: variables

4: n,n2,i,max,min,global:integer;

5: ch,ch1,ch2:char;

6:

7: arrdat:integer array[100];

8: arrdat1: char array[100];

9:

10:

11: module display(n:integer;a:integer array[20];)

12: variables

13: i:integer;

14: begin

15:

16:

17: i:=0;

18: loop

19:

20:
write a[i];

21:
i:=i+1;

22:
if i=n then exit;else;

23:

24: end;

25:

26: end;

27:

28: module sort(a: integer array[20];n:integer;)

29: variables

30: i,j,temp:integer;

31:

32: begin

33:

34: i:=0;

35: j:=0;

36:

37:

38: loop

39:

40:
j:=i+1;

41:
loop

42:

43:

44:

if arrdat[j]<arrdat[i] then

45:

begin

46:

temp:=arrdat[i];

47:

arrdat[i]:=arrdat[j];

48:

arrdat[j]:=temp;

49:

end;

50:

else;

51:

52:

j:=j+1;

53:

54:

if j>(n-1) then exit; else;

55:

56:
end;

57:

58:
i:=i+1;

59:

60:
if i>(n-2) then exit; else;

61: end;

62:

63: end;

64:

65:

66:

67:

68: begin

69:

70: write 'e','n','t','e','r',' ','t','h','e',' ','v','a','l','u','e',' ','o','f',' ','n',' ',':';

71:

72:

73: read n;

74:

75: loop

76:

77:
read arrdat[i];

78:
i:=i+1;

79:
if i=n then exit;else;

80:

81: end;

82:

83:

84: sort(arrdat,n);

85:

86: display(n,arrdat);

87:

88:

89:

90: end ;/*end of program*/

91:

MOON code for the above program:

 entry

 addi r14,r0,topaddr

 j startLabel

display

sw -4(r14),r15

 addi r6,r0,0

 sw -16(r14),r6

L1

 lw r6,-16(r14)

 muli r6,r6,4

 lw r5,-12(r14)

 add r5,r5,r6

 lw r7,0(r5)

 sw -20(r14),r7

 lw r3,-20(r14)

 add r1,r3,r0

 jl r15,putint

 addi r1,r0,newline

subi r14,r14,28

 sw -8(r14),r1

 jl r15,putstr

addi r14,r14,28

 lw r5,-16(r14)

 addi r7,r5,1

 sw -24(r14),r7

 lw r6,-24(r14)

 sw -16(r14),r6

 lw r5,-16(r14)

 lw r6,-8(r14)

 ceq r7,r5,r6

 sw -28(r14),r7

 lw r5,-28(r14)

 bz r5,L2

 j L3

 j L4

L2

L4

 j L1

L3

 lw r15,-4(r14)

 jr r15

sort

sw -4(r14),r15

 addi r6,r0,0

 sw -16(r14),r6

 addi r6,r0,0

 sw -20(r14),r6

L5

 lw r5,-16(r14)

 addi r7,r5,1

 sw -28(r14),r7

 lw r6,-28(r14)

 sw -20(r14),r6

L6

 lw r6,-20(r14)

 muli r6,r6,4

 lw r7,arrdat(r6)

 sw -32(r14),r7

 lw r6,-16(r14)

 muli r6,r6,4

 lw r7,arrdat(r6)

 sw -36(r14),r7

 lw r5,-32(r14)

 lw r6,-36(r14)

 clt r7,r5,r6

 sw -40(r14),r7

 lw r5,-40(r14)

 bz r5,L7

 lw r6,-16(r14)

 muli r6,r6,4

 lw r7,arrdat(r6)

 sw -44(r14),r7

 lw r6,-44(r14)

 sw -24(r14),r6

 lw r6,-16(r14)

 muli r6,r6,4

 lw r7,arrdat(r6)

 sw -48(r14),r7

 lw r6,-20(r14)

 muli r6,r6,4

 lw r7,arrdat(r6)

 sw -52(r14),r7

 lw r6,-52(r14)

 sw -48(r14),r6

 lw r6,-16(r14)

 muli r6,r6,4

 lw r7,-48(r14)

 sw arrdat(r6),r7

 lw r6,-20(r14)

 muli r6,r6,4

 lw r7,arrdat(r6)

 sw -56(r14),r7

 lw r6,-24(r14)

 sw -56(r14),r6

 lw r6,-20(r14)

 muli r6,r6,4

 lw r7,-56(r14)

 sw arrdat(r6),r7

 j L8

L7

L8

 lw r5,-20(r14)

 addi r7,r5,1

 sw -60(r14),r7

 lw r6,-60(r14)

 sw -20(r14),r6

 lw r5,-12(r14)

 subi r7,r5,1

 sw -64(r14),r7

 lw r5,-20(r14)

 lw r6,-64(r14)

 cgt r7,r5,r6

 sw -68(r14),r7

 lw r5,-68(r14)

 bz r5,L9

 j L10

 j L11

L9

L11

 j L6

L10

 lw r5,-16(r14)

 addi r7,r5,1

 sw -72(r14),r7

 lw r6,-72(r14)

 sw -16(r14),r6

 lw r5,-12(r14)

 subi r7,r5,2

 sw -76(r14),r7

 lw r5,-16(r14)

 lw r6,-76(r14)

 cgt r7,r5,r6

 sw -80(r14),r7

 lw r5,-80(r14)

 bz r5,L12

 j L13

 j L14

L12

L14

 j L5

L13

 lw r15,-4(r14)

 jr r15

startLabel

 addi r3,r0,101

 putc r3

 addi r3,r0,110

 putc r3

 addi r3,r0,116

 putc r3

 addi r3,r0,101

 putc r3

 addi r3,r0,114

 putc r3

 addi r3,r0,32

 putc r3

 addi r3,r0,116

 putc r3

 addi r3,r0,104

 putc r3

 addi r3,r0,101

 putc r3

 addi r3,r0,32

 putc r3

 addi r3,r0,118

 putc r3

 addi r3,r0,97

 putc r3

 addi r3,r0,108

 putc r3

 addi r3,r0,117

 putc r3

 addi r3,r0,101

 putc r3

 addi r3,r0,32

 putc r3

 addi r3,r0,111

 putc r3

 addi r3,r0,102

 putc r3

 addi r3,r0,32

 putc r3

 addi r3,r0,110

 putc r3

 addi r3,r0,32

 putc r3

 addi r3,r0,58

 putc r3

 addi r1,r0,newline

 sw -8(r14),r1

 jl r15,putstr

 jl r15,getint

 sw n(r0),r1

L15

 lw r6,i(r0)

 muli r6,r6,4

 lw r7,arrdat(r6)

 sw t18(r0),r7

 jl r15,getint

 sw t18(r0),r1

 lw r6,i(r0)

 muli r6,r6,4

 lw r7,t18(r0)

 sw arrdat(r6),r7

 lw r5,i(r0)

 addi r7,r5,1

 sw t19(r0),r7

 lw r6,t19(r0)

 sw i(r0),r6

 lw r5,i(r0)

 lw r6,n(r0)

 ceq r7,r5,r6

 sw t20(r0),r7

 lw r5,t20(r0)

 bz r5,L16

 j L17

 j L18

L16

L18

 j L15

L17

 addi r5,r0,arrdat

 sw -8(r14),r5

 lw r5,n(r0)

 sw -12(r14),r5

 jl r15,sort

 lw r6,-12(r14)

 sw n(r0),r6

 lw r5,n(r0)

 sw -8(r14),r5

 addi r5,r0,arrdat

 sw -12(r14),r5

 jl r15,display

 hlt

newline db 13,10,0

align

arrdat1 res 100

align

arrdat res 400

ch2 db 0

align

t20 dw 0

ch db 0

align

i dw 0

n2 dw 0

n dw 0

t18 dw 0

t19 dw 0

min dw 0

global dw 0

max dw 0

ch1 db 0

align

16) TC_Code_Generation_014

1: program series;

2:

3: variables

4: n,n2,i,fibo:integer;

5:

6:

7: module fibonacci (n :integer;fib:integer;)

8: variables

9: fib1,fib2,n1:integer;

10: begin

11:

12: if n<3

13: then fib := 1;

14: else

15: begin

16:
n1:=n-1;

17:
fibonacci(n1,fib1);

18:
n1:=n-2;

19:
fibonacci(n1,fib2);

20:

21:
fib := fib1+fib2;

22:

23: end;

24:

25:

26: end;

27:

28:

29: begin

30:

31: write 'e','n','t','e','r',' ','t','h','e',' ','v','a','l','u','e',' ','o','f',' ','n',' ',':';

32:

33:

34: read n;

35:

36: i:=1;

37: write 'f','i','b','o',' ','s','e','r','i','e','s';

38:

39: loop

40:

41:
fibonacci(i,fibo);

42:

43:
write fibo;

44:

45:
i:=i+1;

46:

47:
if i>n then exit;else;

48: end;

49:

50:

51:

52: end ;/*end of program*/

53:

The MOON code for the above program is as follows:

 entry

 addi r14,r0,topaddr

 j startLabel

fibonacci

sw -4(r14),r15

 lw r5,-8(r14)

 clti r7,r5,3

 sw -28(r14),r7

 lw r5,-28(r14)

 bz r5,L1

 addi r6,r0,1

 sw -12(r14),r6

 j L2

L1

 lw r5,-8(r14)

 subi r7,r5,1

 sw -32(r14),r7

 lw r6,-32(r14)

 sw -24(r14),r6

 lw r5,-24(r14)

 sw -48(r14),r5

 lw r5,-16(r14)

 sw -52(r14),r5

subi r14,r14,40

 jl r15,fibonacci

 lw r6,-12(r14)

addi r14,r14,40

 sw -16(r14),r6

 lw r5,-8(r14)

 subi r7,r5,2

 sw -36(r14),r7

 lw r6,-36(r14)

 sw -24(r14),r6

 lw r5,-24(r14)

 sw -48(r14),r5

 lw r5,-20(r14)

 sw -52(r14),r5

subi r14,r14,40

 jl r15,fibonacci

 lw r6,-12(r14)

addi r14,r14,40

 sw -20(r14),r6

 lw r5,-16(r14)

 lw r6,-20(r14)

 add r7,r5,r6

 sw -40(r14),r7

 lw r6,-40(r14)

 sw -12(r14),r6

L2

 lw r15,-4(r14)

 jr r15

startLabel

 addi r3,r0,101

 putc r3

 addi r3,r0,110

 putc r3

 addi r3,r0,116

 putc r3

 addi r3,r0,101

 putc r3

 addi r3,r0,114

 putc r3

 addi r3,r0,32

 putc r3

 addi r3,r0,116

 putc r3

 addi r3,r0,104

 putc r3

 addi r3,r0,101

 putc r3

 addi r3,r0,32

 putc r3

 addi r3,r0,118

 putc r3

 addi r3,r0,97

 putc r3

 addi r3,r0,108

 putc r3

 addi r3,r0,117

 putc r3

 addi r3,r0,101

 putc r3

 addi r3,r0,32

 putc r3

 addi r3,r0,111

 putc r3

 addi r3,r0,102

 putc r3

 addi r3,r0,32

 putc r3

 addi r3,r0,110

 putc r3

 addi r3,r0,32

 putc r3

 addi r3,r0,58

 putc r3

 addi r1,r0,newline

 sw -8(r14),r1

 jl r15,putstr

 jl r15,getint

 sw n(r0),r1

 addi r6,r0,1

 sw i(r0),r6

 addi r3,r0,102

 putc r3

 addi r3,r0,105

 putc r3

 addi r3,r0,98

 putc r3

 addi r3,r0,111

 putc r3

 addi r3,r0,32

 putc r3

 addi r3,r0,115

 putc r3

 addi r3,r0,101

 putc r3

 addi r3,r0,114

 putc r3

 addi r3,r0,105

 putc r3

 addi r3,r0,101

 putc r3

 addi r3,r0,115

 putc r3

 addi r1,r0,newline

 sw -8(r14),r1

 jl r15,putstr

L3

 lw r5,i(r0)

 sw -8(r14),r5

 lw r5,fibo(r0)

 sw -12(r14),r5

 jl r15,fibonacci

 lw r6,-12(r14)

 sw fibo(r0),r6

 lw r3,fibo(r0)

 add r1,r3,r0

 jl r15,putint

 addi r1,r0,newline

 sw -8(r14),r1

 jl r15,putstr

 lw r5,i(r0)

 addi r7,r5,1

 sw t5(r0),r7

 lw r6,t5(r0)

 sw i(r0),r6

 lw r5,i(r0)

 lw r6,n(r0)

 cgt r7,r5,r6

 sw t6(r0),r7

 lw r5,t6(r0)

 bz r5,L4

 j L5

 j L6

L4

L6

 j L3

L5

 hlt

newline db 13,10,0

align

i dw 0

n2 dw 0

n dw 0

t5 dw 0

t6 dw 0

fibo dw 0

8. References
· Compiler Construction: Principles and Practice by K. C. Louden, PWS Publishing Co, 1997.

· Compiler Principles, Techniques, and Tools, by A. Aho, R. Sethi, and J. Ullman, Addison Wesley,1986
· Schaum's Outline of Programming with C, by Byron S. Gottfried, June 1996
 NULL

average

4

0

0

NULL

arrayData

2

1

1

start end

100

 Null

sum

3

0

1

start end

4 10 pointers to symbol table entries of variables

(nextprev)

(lexeme)

(kindof)

(type)

(scope)

(addInfo)

PAGE
1

